山丘链霉菌SHMCCD58296-细黄链霉菌SHMCCD59545-组织细胞固定液(4%PFA)
PF-4 可能通过与血管内皮细胞表面的受体结合,抑制血管内皮细胞的增殖和迁移,从而抑制血管生成。
Xenin 是一种由25个氨基酸组成的胃肠肽激素,最初从人胃粘膜中分离出来。它与葡萄糖依赖性促胰岛素多肽(GIP)共同由肠K细胞分泌,具有调节进食行为、胃肠动力、胰腺分泌以及血糖调节等多种生物学功能。 生理功能 调节进食行为:Xenin能够显著抑制进食,其作用机制可能涉及与下丘脑等部位的相关受体结合,调节神经信号传导来实现对食欲的调控。研究表明,Xenin通过激活孤束核和下丘脑的受体,减少食物摄入。 调节胃肠动力:Xenin可以延迟胃排空,调节胃肠蠕动。在人体中,Xenin-25与GIP共同给药可通过延迟胃排空来降低餐后血糖。 调节胰腺分泌:Xenin能够刺激胰岛素和胰高血糖素的分泌,对胰腺的内分泌和外分泌功能都有调节作用。Xenin-8(Xenin的C端八肽)能够以剂量依赖的方式显著增强胰岛素对葡萄糖的反应。 抗糖尿病潜力:Xenin在肥胖和糖尿病动物模型中显示出抗糖尿病潜力,能够促进β细胞存活,增强GIP的胰岛素促分泌作用。此外,Xenin还可能通过减少β细胞凋亡和促进胰岛细胞转分化来维持β细胞功能。 作用机制 Xenin的具体作用机制尚未完全明确。
在肿瘤微环境中,TGF-β1的异常激活可能导致肿瘤细胞的增殖和转移。
磁珠法mRNA纯化试剂盒是一种基于磁珠分离技术的高效工具,广泛应用于从总RNA中快速纯化mRNA。该试剂盒利用磁珠表面的Oligo(dT)序列与mRNA的poly(A)尾特异性结合,通过磁场分离和洗涤步骤,最终获得高纯度的mRNA。 工作原理 磁珠法mRNA纯化试剂盒的核心是磁珠表面修饰的Oligo(dT)序列。这些序列能够特异性结合mRNA的poly(A)尾,通过磁力作用实现快速分离。具体步骤包括: 磁珠结合:将总RNA与Oligo(dT)磁珠混合,使磁珠上的Oligo(dT)与mRNA的poly(A)尾结合。 磁力分离:通过磁力架将磁珠与溶液分离,去除未结合的杂质。 洗涤:用洗涤缓冲液去除残留杂质。 洗脱:用洗脱液将mRNA从磁珠上洗脱下来。 优势 高纯度:纯化后的mRNA纯度高,适合多种下游实验,如RT-qPCR、高通量测序等。 快速高效:整个纯化过程通常在15分钟内完成。 操作简便:所有操作均在同一个离心管中完成,无需复杂设备。 适用范围广:适用于动物、植物、细菌等多种生物样本。 注意事项 磁珠保存:磁珠应避免冷冻或干燥,使用前需恢复至室温并充分混匀。
总之,5' DNA腺苷酰化试剂盒为分子生物学研究提供了一个强大的工具。
重组小鼠可溶性 APRIL(Recombinant Mouse sAPRIL,也称 TNFSF13)是一种重要的细胞因子,属于肿瘤坏死因子(TNF)超家族。它在免疫调节、细胞存活和增殖中发挥着关键作用,是免疫学和细胞生物学研究中的重要工具。 sAPRIL 的结构与功能 sAPRIL 是一种单链多肽,分子量约为 25 - 28kDa。重组小鼠 sAPRIL 通过基因工程技术生产,具有高度的纯度和生物活性。它主要通过与 BCMA 和 TACI 受体结合,调节免疫细胞的存活和功能。 在免疫调节中的作用 sAPRIL 在免疫调节中发挥着多种重要作用。它能够促进 B 细胞的存活和增殖,特别是对成熟 B 细胞和浆细胞的存活具有显著的调节作用。此外,sAPRIL 还能够调节 T 细胞的活性,促进 T 细胞的增殖和分化。研究表明,sAPRIL 在维持免疫系统的稳态和调节免疫反应的平衡方面具有不可替代的作用。 在细胞存活中的作用 sAPRIL 在细胞存活中也发挥着关键作用。它能够通过与 BCMA 和 TACI 受体结合,激活下游的信号通路,促进细胞的存活和抗凋亡。
未来的研究将进一步揭示其具体作用机制,为相关疾病的治疗提供新的靶点和策略。
PDGF-CC(人源)是血小板衍生生长因子(PDGF)家族中的一种重要成员,由两个C亚基组成。它在细胞增殖、迁移、分化以及组织修复等多个生理过程中发挥着关键作用,是生物医学研究中的一个重要工具。 结构与功能 PDGF家族是一类二聚体生长因子,由A、B、C和D四个亚基组成。PDGF-CC是由两个C亚基组成的同源二聚体。它通过与细胞表面的PDGFR-α受体结合,激活下游信号通路,从而促进细胞的增殖、迁移和分化。PDGF-CC在多种细胞类型中发挥作用,包括成纤维细胞、平滑肌细胞和内皮细胞。 组织修复与再生 PDGF-CC在组织修复和再生过程中起着至关重要的作用。在伤口愈合过程中,PDGF-CC能够刺激成纤维细胞的增殖和迁移,加速胶原蛋白的合成和沉积,从而促进伤口的愈合。此外,PDGF-CC还能够促进血管内皮细胞的增殖和迁移,有助于新生血管的形成,为伤口愈合提供必要的营养和氧气。 胚胎发育 在胚胎发育过程中,PDGF-CC参与调控多种细胞的增殖和分化。它在胚胎的早期发育阶段起作用,影响器官和组织的形成。
随着研究的不断深入,Flt-3L在免疫治疗中的应用前景将更加广阔,为人类健康带来更多的希望。
MIP-1α(巨噬细胞炎症蛋白-1α,Macrophage Inflammatory Protein-1α),也称为CCL3,是一种重要的趋化因子,属于CC趋化因子家族。它在免疫系统中发挥着关键作用,主要通过调节免疫细胞的迁移和激活来维持免疫平衡。MIP-1α广泛存在于多种细胞和组织中,包括巨噬细胞、单核细胞、树突状细胞和某些T细胞亚群。 MIP-1α的结构与功能 MIP-1α是一种小分子蛋白,由72个氨基酸组成,分子量约为8.5kDa。它通过与特定的G蛋白偶联受体结合,发挥其生物学功能。MIP-1α的主要受体包括CCR1、CCR3和CCR5,这些受体广泛表达在免疫细胞上,如巨噬细胞、单核细胞、树突状细胞和T细胞。 在免疫细胞迁移中的作用 MIP-1α在免疫细胞的迁移中起着重要作用。它能够吸引巨噬细胞、单核细胞和某些T细胞亚群向炎症部位迁移,从而增强免疫反应。例如,在感染或组织损伤时,MIP-1α的释放能够引导免疫细胞迅速到达受损组织,发挥免疫监视和清除功能。 在免疫调节中的作用 除了促进免疫细胞的迁移,MIP-1α还参与调节免疫细胞的激活和功能。
它广泛应用于分子克隆、基因工程以及高通量测序(NGS)文库构建等领域。
TAT Peptide(转录激活因子TAT肽)是一种源自人类免疫缺陷病毒(HIV)TAT蛋白的多肽片段,因其卓越的细胞穿透能力而被广泛研究和应用。TAT肽的序列通常为YGRKKRRQRRR,包含多个精氨酸和赖氨酸残基,这些碱性氨基酸赋予了TAT肽独特的细胞穿透特性,使其能够高效地进入各种细胞类型。 细胞穿透机制 TAT肽的细胞穿透能力主要依赖于其富含精氨酸和赖氨酸的序列,这些碱性氨基酸能够与细胞膜上的负电荷相互作用,促进肽段与细胞膜的结合。研究表明,TAT肽可以通过多种机制进入细胞,包括直接穿透细胞膜、内吞作用以及与细胞表面受体的相互作用。这种多机制的穿透方式使得TAT肽能够在不同细胞类型中高效地传递药物、蛋白质和核酸等生物分子。 生物医学应用 TAT肽在生物医学领域具有广泛的应用前景。由于其能够穿透细胞膜,TAT肽被广泛用于药物递送系统,尤其是那些难以进入细胞的药物。例如,TAT肽可以与抗癌药物、基因编辑工具(如CRISPR-Cas9)或小分子药物结合,提高药物的细胞内摄取效率,从而增强治疗效果。
上海保藏生物技术中心是一家有着先进的发展理念,先进的管理经验,在发展过程中不断完善自己,要求自己,不断创新,时刻准备着迎接更多挑战的活力公司,在上海市等地区的化工中汇聚了大量的人脉以及客户资源,在业界也收获了很多良好的评价,这些都源自于自身的努力和大家共同进步的结果,这些评价对我们而言是**好的前进动力,也促使我们在以后的道路上保持奋发图强、一往无前的进取创新精神,努力把公司发展战略推向一个新高度,在全体员工共同努力之下,全力拼搏将共同上海保藏生物技供应和您一起携手走向更好的未来,创造更有价值的产品,我们将以更好的状态,更认真的态度,更饱满的精力去创造,去拼搏,去努力,让我们一起更好更快的成长!