酒色青霉-烬灰红链霉菌烬灰红亚种SHMCCD61184-肉桂紫青霉
通过调节 IL - 36RA 的活性,可以有效控制炎症反应,减轻组织损伤,促进疾病缓解。
Recombinant Human GDF-15 Protein(重组人生长分化因子15蛋白)是TGF-β超家族的重要成员,因其在多种疾病中的关键作用而备受关注。GDF-15在健康人体中表达水平极低,但在炎症、肿瘤、心血管疾病等病理状态下显著升高。 在心血管疾病中的应用 GDF-15水平与心血管疾病的严重程度密切相关,尤其是在急性冠状动脉综合征(ACS)、心肌梗死(MI)和心力衰竭(HF)中,其水平的升高可作为心血管事件的独立预测因子。研究表明,GDF-15不仅可作为疾病生物标志物,其血清水平还可为治疗策略选择提供依据。 在肿瘤治疗中的潜力 GDF-15在肿瘤的发生和发展中扮演复杂角色。一方面,它可能促进肿瘤细胞的凋亡;另一方面,它也可能促进肿瘤的转移和侵袭。近期研究发现,中和GDF-15可增强抗PD-1疗法的效果,改善某些肺癌和尿路上皮癌患者的治疗反应。 在代谢性疾病中的作用 GDF-15与肥胖和代谢紊乱有关,可作为预防和治疗肥胖的潜在靶点。此外,GDF-15水平的升高与糖尿病的发生风险增加相关。
它不仅可以单独使用,还能够与其他抗癌药物联合应用,发挥协同作用,进一步提高治疗效果。
表皮生长因子受体(EGF Receptor,EGFR)在细胞增殖、分化和存活等生理过程中扮演着关键角色。EGFR的信号传导依赖于其受体底物的磷酸化,其中EGF Receptor Substrate 2(简称HER2或Neu)的磷酸化酪氨酸残基Tyr5是一个重要的研究焦点。 HER2及其磷酸化位点 HER2是EGFR家族的成员之一,其在多种细胞类型中表达,并在细胞信号转导中发挥重要作用。HER2的Tyr5位点的磷酸化是其激活的关键步骤之一。当EGF与其受体结合时,EGFR家族成员发生二聚化,激活其内在的酪氨酸激酶活性,导致包括Tyr5在内的多个酪氨酸残基的自身磷酸化。这种磷酸化为下游信号分子提供了结合位点,从而启动一系列信号级联反应,如MAPK和PI3K-Akt信号通路,进而影响细胞的增殖、存活和迁移。 Tyr5磷酸化的生物学意义 Tyr5的磷酸化在HER2介导的信号传导中具有重要意义。磷酸化的Tyr5能够招募并激活多种下游效应分子,如SH2结构域含有的蛋白,从而调节细胞内的多种生理过程。例如,Tyr5的磷酸化可以激活PI3K-Akt信号通路,促进细胞存活和抗凋亡。
其在基础研究和临床应用中的潜力正在不断被挖掘,有望为免疫相关疾病的治疗带来新的突破。
B型利钠肽(BNP)是一种重要的心脏激素,主要由心室肌细胞分泌。它在人体心血管系统中发挥着关键的调节作用,尤其是在维持心脏功能和调节血压方面。 BNP的生物学功能 BNP的分泌主要受到心室壁张力的调节。当心室压力升高或心肌受到拉伸时,BNP的分泌增加。BNP通过其受体(NP受体)发挥作用,具有多种生物学功能: 利钠利尿:BNP能够增加肾脏对钠和水的排泄,减轻心脏的负荷。 扩张血管:BNP能够松弛平滑肌细胞,降低血压,减轻心脏的后负荷。 抗纤维化:BNP能够抑制心肌纤维化,保护心脏结构。 抗增殖:BNP能够抑制心肌细胞的增殖,减少心脏肥大。 BNP与疾病 BNP在多种心血管疾病中表现出异常的表达水平。例如,在心力衰竭、心肌梗死、高血压和心肌病等疾病中,BNP的水平往往显著升高。这表明BNP可能在这些疾病的发生和发展中发挥重要作用。研究表明,BNP的升高是心力衰竭的一个重要标志物,能够用于疾病的早期诊断和病情监测。 重组人BNP的应用 重组人BNP是通过基因工程技术生产的,具有与天然BNP相似的生物活性。它在研究中被广泛用于探索BNP在心血管功能中的具体作用机制。
它通过激活AMPK信号通路,促进脂肪酸氧化和能量消耗,从而降低血糖水平。
Recombinant Human RGMa Protein(His-Avi Tag)是一种高纯度、生物活性优异的重组蛋白,专为神经系统疾病机制与再生医学研究设计。RGMa(Repulsive Guidance Molecule a)作为轴突导向的关键抑制因子,通过结合Neogenin受体调控神经元生长锥塌陷,在脊髓损伤、多发性硬化等病理过程中扮演重要角色。该蛋白采用哺乳动物细胞表达系统,保留天然构象与糖基化修饰,C端融合的His标签与Avi标签实现双重功能:His标签便于通过Ni-NTA层析高效纯化(纯度≥95%);Avi标签则允许生物素定点标记,适配基于链霉亲和素的检测平台(如BLI、SPR),显著提升相互作用研究的灵敏度与可重复性。实验表明,该蛋白在体外可剂量依赖性地抑制鸡胚背根神经节轴突延伸(IC50≈50 ng/mL),并可特异性阻断Neogenin介导的RhoA激活通路。此外,其内毒素水平<0.1 EU/μg,满足体内应用需求。
针对LRG1的中和抗体和抑制剂正在研发中,有望为相关疾病的治疗提供新的策略。
LD78-β(CCL3L1)是一种重要的趋化因子,属于CC趋化因子家族。它在免疫调节和宿主防御中发挥着关键作用,通过调节免疫细胞的迁移和激活来维持免疫平衡。 结构与功能 LD78-β由93个氨基酸组成,成熟蛋白包含70个氨基酸,分子量约为7.8kDa。它与CC趋化因子受体1(CCR1)、CCR3和CCR5具有高结合亲和力。LD78-β能够吸引单核细胞、巨噬细胞和某些T细胞亚群向炎症部位迁移,增强免疫反应。 免疫调节与细胞增殖 LD78-β在免疫细胞的迁移和激活中起着重要作用。它能够增强巨噬细胞和单核细胞的吞噬能力,促进其对病原体和受损细胞的清除。此外,LD78-β还能够调节T细胞的活化和分化,影响免疫反应的类型和强度。 在疾病中的作用 LD78-β的异常表达与多种疾病的发生和发展密切相关。在某些自身免疫性疾病中,如类风湿关节炎和炎症性肠病,LD78-β的水平可能显著升高,导致过度的免疫细胞浸润和炎症反应。此外,LD78-β在肿瘤微环境中的表达也可能影响肿瘤的生长和转移。 临床应用潜力 由于LD78-β在免疫调节中的重要作用,它被认为是潜在的治疗靶点。
重组技术的应用使得重组食蟹猴 LRRC15 蛋白(His 标签)的生产成为可能。
在免疫学和炎症研究领域,Recombinant Biotinylated Mouse IL-17A(重组生物素化小鼠IL-17A)正成为探索IL-17A功能和相关疾病机制的重要工具。 IL-17A是一种重要的细胞因子,主要由Th17细胞分泌,在免疫反应和炎症过程中发挥关键作用。它通过与IL-17受体结合,激活下游信号通路,促进炎症因子的产生和细胞的活化。IL-17A在多种自身免疫疾病(如银屑病、类风湿性关节炎等)和慢性炎症性疾病中表达异常,使其成为疾病治疗的潜在靶点。 重组生物素化技术为IL-17A蛋白的研究带来了新的突破。生物素与链霉亲和素(streptavidin)具有极高的亲和力,这种特性使得重组生物素化小鼠IL-17A蛋白可以方便地与链霉亲和素标记的探针或检测工具结合,实现对IL-17A蛋白的精准定位、定量分析以及与其他生物分子的相互作用研究。这种技术不仅提高了实验的灵敏度和特异性,还为多维度的细胞和分子研究提供了可能。 利用重组生物素化小鼠IL-17A蛋白,研究人员可以深入探究IL-17A在免疫反应和炎症中的作用机制。
上海保藏生物技术中心是一家有着先进的发展理念,先进的管理经验,在发展过程中不断完善自己,要求自己,不断创新,时刻准备着迎接更多挑战的活力公司,在上海市等地区的化工中汇聚了大量的人脉以及客户资源,在业界也收获了很多良好的评价,这些都源自于自身的努力和大家共同进步的结果,这些评价对我们而言是**好的前进动力,也促使我们在以后的道路上保持奋发图强、一往无前的进取创新精神,努力把公司发展战略推向一个新高度,在全体员工共同努力之下,全力拼搏将共同上海保藏生物技供应和您一起携手走向更好的未来,创造更有价值的产品,我们将以更好的状态,更认真的态度,更饱满的精力去创造,去拼搏,去努力,让我们一起更好更快的成长!