幻灯二

Recombinant Human BTN2A1 Protein, His tag- 粘质沙雷氏菌粘质亚种(基因组DNA)-Shimia isoporae

该产品采用高保真DNA聚合酶,错配率极低,尤其在高GC含量的复杂模板中表现出色,能够有效避免碱基突变

Recombinant Human FGF-19 Protein, Flag Tag(重组人 FGF-19 蛋白,Flag 标签)是近年来生物医学研究中备受瞩目的分子。FGF-19 属于成纤维细胞生长因子(FGF)家族,这一家族的成员在细胞增殖、分化、代谢调节以及组织修复等多个生理过程中发挥着关键作用。而 FGF-19 特别以其在代谢调控方面的独特功能而受到关注。 FGF-19 在肝脏代谢、肠道功能以及能量平衡等方面扮演着重要角色。它通过与细胞表面的受体结合,激活一系列信号通路,从而调节葡萄糖和脂质代谢。研究表明,FGF-19 能够改善胰岛素敏感性,促进脂肪酸氧化,这对于治疗代谢性疾病如肥胖症和 2 型糖尿病具有潜在的临床价值。此外,FGF-19 还在肠道中发挥作用,调节肠道蠕动和营养吸收,进一步影响全身的能量代谢。 重组人 FGF-19 蛋白的生产利用基因工程技术,通过在蛋白末端添加 Flag 标签,便于其纯化和检测。这种重组蛋白的制备为实验室研究提供了有力的工具,使得科学家能够更深入地探究 FGF-19 的生物学功能和作用机制。

在分子生物学研究中,E.coli Poly(A)加尾酶也具有重要的应用价值。

重组人可溶性Fas受体(Recombinant Human sFasR)是一种重要的细胞凋亡调节蛋白,属于肿瘤坏死因子受体超家族(TNF superfamily)。sFasR通过与Fas配体(FasL)结合,抑制Fas介导的细胞凋亡,从而在多种生理和病理过程中发挥关键作用。 生物学功能 细胞凋亡调控:Fas和FasL属于TNF超家族,Fas是I型跨膜蛋白,FasL是II型跨膜蛋白。FasL与Fas结合后,会触发Fas表达细胞的凋亡。sFasR作为一种诱饵受体,能够结合FasL,阻止其与Fas结合,从而抑制细胞凋亡。 免疫调节:在免疫系统中,sFasR能够调节免疫细胞的存活和功能,影响免疫反应的强度和持续时间。 神经保护:在神经损伤和神经退行性疾病中,sFasR通过抑制Fas介导的凋亡,保护神经元和胶质细胞,减少细胞死亡。 临床应用 神经损伤治疗:研究表明,sFasR在急性脊髓损伤(SCI)中具有神经保护作用。通过抑制Fas-FasL相互作用,sFasR能够增加神经元和少突胶质细胞的存活,改善组织和长束轴突的保留,减少凋亡细胞死亡,并增强神经功能恢复。

这些特性提示NP-EI可能在调节能量代谢、食欲和情绪等过程中具有潜在的治疗应用价值。

人源MIA-2(Melanoma Inhibitor Activity Protein 2)是一种由MIA2基因编码的分泌性细胞因子。它在肝脏中高表达,在睾丸中表达较弱。MIA-2属于MIA/OTOR家族,与MIA、OTOR和TANGO等成员共享一个Src同源性-3(SH3)样结构域。 MIA-2在生理功能上具有重要作用。它可能参与调节细胞外基质的重塑和细胞迁移,对组织修复和炎症反应有潜在影响。此外,MIA-2在严重纤维化、炎症和慢性肝病患者中的表达水平显著高于其他患者,这表明其可能作为临床诊断肝病活动性和严重程度的标志物。 在疾病研究方面,MIA-2的异常表达可能与多种病理状态相关。例如,在某些肿瘤细胞中,MIA-2的表达可能与肿瘤的侵袭性和转移能力有关。然而,其在肿瘤中的具体作用机制尚需进一步研究。 目前,重组人MIA-2蛋白已通过基因工程技术生产,用于研究其生物学功能和潜在的临床应用。随着对MIA-2功能的深入了解,它有望成为治疗肝病和某些肿瘤的靶点。

例如,低脂联素水平与肥胖、2型糖尿病、心血管疾病和某些癌症的风险增加有关。

NANOG是一种关键的转录因子,在维持胚胎干细胞的多能性和自我更新中发挥着重要作用。近年来,科学家们通过将NANOG与TAT(Trans-Activator of Transcription)蛋白融合,开发出了一种名为NANOG-TAT的融合蛋白。这种融合蛋白能够高效地进入细胞,从而在细胞重编程和再生医学中展现出巨大的应用潜力。 NANOG的功能与机制 NANOG的主要功能是维持干细胞的多能性和自我更新能力。它通过结合特定的基因启动子,调控基因的表达,从而维持干细胞的未分化状态。NANOG在胚胎发育的早期阶段表达水平较高,随着胚胎的发育,其表达水平逐渐下降。在成体组织中,NANOG的表达通常受到严格调控,但在某些病理状态下,如肿瘤发生时,NANOG的表达水平可能会异常升高。 NANOG-TAT的创新与应用 NANOG-TAT融合蛋白的开发为细胞重编程和再生医学带来了新的希望。TAT蛋白是一种能够高效进入细胞的载体蛋白,通过将NANOG与TAT融合,科学家们能够将NANOG高效地导入目标细胞中。这种融合蛋白不仅能够维持干细胞的多能性,还能够将已分化的细胞重新编程为多能干细胞。

这些合成的RNA可用于研究基因表达调控、蛋白质合成机制,以及开发新型的基因治疗载体。

VEGF165(血管内皮生长因子165,人源)是VEGF家族中研究最为透彻的成员之一,它在血管生成、组织修复和胚胎发育中发挥着至关重要的作用。通过HEK 293细胞表达系统生产的VEGF165,不仅保留了其天然的生物活性,还提高了生产效率和纯度,使其在生物医学研究和临床应用中具有重要价值。 结构与功能 VEGF165由165个氨基酸组成,是VEGF家族中活性较高的成员之一。它主要通过与血管内皮细胞表面的VEGFR-2受体结合,激活下游信号通路,从而促进血管内皮细胞的增殖、迁移和存活。VEGF165在血管生成过程中起着核心作用,特别是在胚胎发育和组织修复过程中,它能够刺激新生血管的形成,为组织提供必要的营养和氧气。 HEK 293 表达系统的优势 HEK 293细胞是一种广泛用于重组蛋白生产的哺乳动物细胞系,具有高效、稳定和可扩展性强的特点。通过HEK 293细胞表达的VEGF165,能够高效地生产出高纯度的蛋白质,同时保留其天然的生物活性。这种表达系统不仅提高了生产效率,还降低了生产成本,使其更适合大规模生产和应用。

通过抑制肿瘤相关血管生成,PF-4可以限制肿瘤的生长和转移,提高患者的生存率。

Arg-Gly-Asp-Ser(简称RGDS)是一种四肽序列,广泛存在于细胞外基质蛋白(如纤维连接蛋白、层粘连蛋白等)中。它在细胞黏附、迁移、增殖和信号传导中发挥着关键作用,是细胞与细胞外基质相互作用的重要分子基础。 细胞黏附与迁移 RGDS 序列是细胞黏附分子整合素的重要识别位点。整合素是一类跨膜糖蛋白,广泛分布于细胞表面,负责介导细胞与细胞外基质之间的黏附。RGDS 通过与整合素结合,促进细胞在基质上的黏附和铺展,这对于细胞的形态维持和功能发挥至关重要。此外,RGDS 还在细胞迁移中起关键作用,例如在胚胎发育、伤口愈合和肿瘤转移过程中,细胞通过识别和结合RGDS序列,实现定向迁移。 信号传导与细胞增殖 RGDS 不仅参与细胞的物理黏附,还通过整合素介导的信号传导途径,影响细胞的增殖和分化。当细胞通过整合素与RGDS结合时,会激活一系列下游信号通路,如PI3K-Akt通路、Ras-MAPK通路等,进而调节细胞的生长、存活和分化。例如,在某些肿瘤细胞中,RGDS 的异常表达或整合素的过度激活可能导致细胞增殖失控,促进肿瘤的发生和发展。

上海保藏生物技术中心是一家有着先进的发展理念,先进的管理经验,在发展过程中不断完善自己,要求自己,不断创新,时刻准备着迎接更多挑战的活力公司,在上海市等地区的化工中汇聚了大量的人脉以及客户资源,在业界也收获了很多良好的评价,这些都源自于自身的努力和大家共同进步的结果,这些评价对我们而言是**好的前进动力,也促使我们在以后的道路上保持奋发图强、一往无前的进取创新精神,努力把公司发展战略推向一个新高度,在全体员工共同努力之下,全力拼搏将共同上海保藏生物技供应和您一起携手走向更好的未来,创造更有价值的产品,我们将以更好的状态,更认真的态度,更饱满的精力去创造,去拼搏,去努力,让我们一起更好更快的成长!

您可能还会对下面的文章感兴趣:

内容页广告位一